Search results for "Probability of commuting pair"

showing 4 items of 4 documents

The probability that $x^m$ and $y^n$ commute in a compact group

2013

In a recent article [K.H. Hofmann and F.G. Russo, The probability that $x$ and $y$ commute in a compact group, Math. Proc. Cambridge Phil. Soc., to appear] we calculated for a compact group $G$ the probability $d(G)$ that two randomly picked elements $x, y\in G$ satisfy $xy=yx$, and we discussed the remarkable consequences on the structure of $G$ which follow from the assumption that $d(G)$ is positive. In this note we consider two natural numbers $m$ and $n$ and the probabilty $d_{m,n}(G)$ that for two randomly selected elements $x, y\in G$ the relation $x^my^n=y^nx^m$ holds. The situation is more complicated whenever $n,m>1$. If $G$ is a compact Lie group and if its identity component $G_…

Haar measureProbability of commuting paircompact groupSettore MAT/09 - Ricerca OperativaLie group
researchProduct

The probability that $x$ and $y$ commute in a compact group

2010

We show that a compact group $G$ has finite conjugacy classes, i.e., is an FC-group if and only if its center $Z(G)$ is open if and only if its commutator subgroup $G'$ is finite. Let $d(G)$ denote the Haar measure of the set of all pairs $(x,y)$ in $G \times G$ for which $[x,y] = 1$; this, formally, is the probability that two randomly picked elements commute. We prove that $d(G)$ is always rational and that it is positive if and only if $G$ is an extension of an FC-group by a finite group. This entails that $G$ is abelian by finite. The proofs involve measure theory, transformation groups, Lie theory of arbitrary compact groups, and representation theory of compact groups. Examples and re…

Haar measureGroup (mathematics)General MathematicsCommutator subgroupactions on Hausdorff spaces20C05 20P05 43A05Center (group theory)Group Theory (math.GR)Functional Analysis (math.FA)CombinatoricsMathematics - Functional AnalysisProbability of commuting pairConjugacy classCompact groupFOS: MathematicsComponent (group theory)compact groupCharacteristic subgroupAbelian groupMathematics - Group TheoryMathematics
researchProduct

On the tensor degree of finite groups

2013

We study the number of elements $x$ and $y$ of a finite group $G$ such that $x \otimes y= 1_{_{G \otimes G}}$ in the nonabelian tensor square $G \otimes G$ of $G$. This number, divided by $|G|^2$, is called the tensor degree of $G$ and has connection with the exterior degree, introduced few years ago in [P. Niroomand and R. Rezaei, On the exterior degree of finite groups, Comm. Algebra 39 (2011), 335--343]. The analysis of upper and lower bounds of the tensor degree allows us to find interesting structural restrictions for the whole group.

algebraic topologyFOS: MathematicsAlgebraic Topology (math.AT)Mathematics - CombinatoricsGroup Theory (math.GR)Combinatorics (math.CO)Mathematics - Algebraic TopologySettore MAT/03 - Geometria20D15 20J99 20D60 20C25Nonabelian tensor squareprobability of commuting pairsMathematics - Group Theory$p$-goup
researchProduct

On some recent investigations of probability in group theory

2010

We describe some recent contributions on the probability of commuting pairs, introduced by P. Erdos, W. Gustafson and P. Turan around 1968 and 1973. Both combinatorial methods and character theory have significant application in this context and we illustrate some standard techniques and strategies, once generalizations of the probability of commuting pairs want to be studied. The importance of the subject is emphasized in some remarks and open questions, which reformulate some classical conjectures in group theory via a probabilistic approach.

Settore MAT/02 - AlgebraSettore MAT/05 - Analisi MatematicaSettore MAT/03 - Geometriaprobability of commuting pairs complexes
researchProduct